BIENVENIDOS

BIENVENIDOS A NUESTRO PORTAL DE INVESTIGACIONES DE FISCICA CON ESTE BLOCK PRETENDEMOS AVANZAR EL CONOCIMIENTO DEL LOS JOVENES DEL CETIS 109 O EXTERIORMENTE DEL PLANTEL HACIENDO LA FISICA MUCHO MAS DINAMICA

miércoles, 25 de mayo de 2011

CANTIDAD DE MOVIMIENTO

Cantidad de movimiento

La cantidad de movimiento, momento lineal, ímpetu o moméntum es una magnitud vectorial, unidad SI: (kg m/s) que, en mecánica clásica, se define como el producto de la masa del cuerpo y su velocidad en un instante determinado.
En Mecánica Clásica la forma más usual de introducir la cantidad de movimiento es mediante definición como el producto de la masa (kg) de un cuerpo material por su velocidad (m/s), para luego analizar su relación con la ley de Newton a través del teorema del impulso y la variación de la cantidad de movimiento. No obstante, después del desarrollo de la Física Moderna, esta manera de hacerlo no resultó la más conveniente para abordar esta magnitud fundamental.
El defecto principal es que esta forma esconde el concepto inherente a la magnitud, que resulta ser una propiedad de cualquier ente físico con o sin masa, necesaria para describir las interacciones. Los modelos actuales consideran que no sólo los cuerpos masivos poseen cantidad de movimiento, también resulta ser un atributo de los campos y los fotones.
La cantidad de movimiento obedece a una ley de conservación, lo cual significa que la cantidad de movimiento total de todo sistema cerrado (o sea uno que no es afectado por fuerzas exteriores, y cuyas fuerzas internas no son disipadoras) no puede ser cambiada y permanece constante en el tiempo.
En el enfoque geométrico de la mecánica relativista la definición es algo diferente. Además, el concepto de momento lineal puede definirse para entidades físicas como los fotones o los campos electromagnéticos, que carecen de masa en reposo. No se debe confundir el concepto de momento lineal con otro concepto básico de la mecánica newtoniana, denominado momento angular, que es una magnitud diferente.
Finalmente, se define el impulso recibido por una partícula o un cuerpo como la variación de la cantidad de movimiento durante un período de tiempo dado:

Siendo pf la cantidad de movimiento al final del intervalo y p0 al inicio del intervalo.

Cantidad de movimiento en mecánica clásica

Mecánica newtoniana

Históricamente el concepto de cantidad de movimiento surgió en el contexto de la mecánica newtoniana en estrecha relación con el concepto de velocidad y el de masa. En mecánica newtoniana se define la cantidad de movimiento lineal como el producto de la masa por la velocidad:


La idea intuitiva tras esta definición está en que la "cantidad de movimiento" dependía tanto de la masa como de la velocidad: si se imagina una mosca y un camión, ambos moviéndose a 40 km/h, la experiencia cotidiana dice que la mosca es fácil de detener con la mano mientras que el camión no, aunque los dos vayan a la misma velocidad. Esta intuición llevó a definir una magnitud que fuera proporcional tanto a la masa del objeto móvil como a su velocidad.

Cantidad de movimiento en mecánica relativista

La constancia de la velocidad de la luz en todos los sistemas inerciales tiene como consecuencia que la fuerza aplicada y la aceleración adquirida por un cuerpo material no sean colineales en general, por lo cual la ley de Newton expresada como F=ma no es la más adecuada. La ley fundamental de la mecánica relativista aceptada es F=dp/dt.
El Principio de Relatividad establece que las leyes de la Física conserven su forma en los sistemas inerciales (los fenómenos siguen las mismas leyes). Aplicando este Principio en la ley F=dp/dt se obtiene el concepto de masa relativista, variable con la velocidad del cuerpo, si se mantiene la definición clásica (newtoniana) de la cantidad de movimiento.
En el enfoque geométrico de la mecánica relativista, puesto que el intervalo de tiempo efectivo percibido por una partícula que se mueve con respecto a un observador difiere del tiempo medido por el observador. Eso hace que la derivada temporal del momento lineal respecto a la coordenada temporal del observador inercial y la fuerza medida por él no coincidan. Para que la fuerza sea la derivada temporal del momento es necesario emplear la derivada temporal respecto al tiempo propio de la partícula. Eso conduce a redefinir la cantidad de movimiento en términos de la masa y la velocidad medida por el observador con la corrección asociada a la dilatación de tiempo experimentada por la partícula. Así, la expresión relativista de la cantidad de movimiento de una partícula medida por un observador inercial viene dada por:
Donde v2,c2 son respectivamente el módulo al cuadrado de la velocidad de la partícula y la velocidad de la luz al cuadrado y γ es el factor de Lorentz.
Además, en mecánica relativista, cuando se consideran diferentes observadores en diversos estados de movimiento surge el problema de relacionar los valores de las medidas realizadas por ambos. Eso sólo es posible si en lugar de considerar vectores tridimensionales se consideran cuadrivectores que incluyan coordenadas espaciales y temporales. Así, el momento lineal definido anteriormente junto con la energía constituye el cuadrivector momento-energía o cuadrimomento P:


Los cuadrimomentos definidos como en la última expresión medidos por dos observadores inerciales se relacionarán mediante las ecuaciones suministradas por las transformaciones de Lorentz.

No hay comentarios:

Publicar un comentario